
Abstract The influence of repeated hypoxia on the de-
velopment of haemoglobin (Hb) subtypes and on ex-
tramedullary haematopoiesis (EMH) was investigated in
young Wistar rats of different ages. The rats were exposed
to hypercapnic/hypoxic and to “simple” hypoxic condi-
tions. The results obtained were compared to those of an
untreated age-matched control group. Different globin
chains were measured using HPLC and time-of-flight
(TOF) mass analysis. The number of EMH cells was eval-
uated by cell counting. By determining the proportions of
α- and β-chains, fetal, neonatal and mature types of globin
chain composition could be differentiated. The β-2 chain
levels were significantly higher in hypercapnic/hypoxic

environments than in the controls and simple hypoxic en-
vironments. The numbers of EMH cells in the two groups
subjected to hypercapnia/hypoxia decreased significantly
more slowly compared to the controls and simple hypoxia
groups. Therefore, the development of Hb subtypes and
the EMH activity in rats were influenced by both repeated
hypercapnia and hypoxia.
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Introduction

Cases of sudden and unexpected infant death, most of
which have been classified under the sudden infant death
syndrome (SIDS), constitute a significant socio-medical
problem. From some pathological findings, e.g. extramed-
ullary haematopoiesis (EMH) [1, 2] and fatty changes in
the liver [3], elevated levels of fetal haemoglobin (Hb) [4,
5] and from epidemiological data, e.g. significance of the
prone sleeping position [6, 7] it can be hypothesised that
hypercapnia and hypoxia could have significant effects
especially in conjunction with other risk factors [8, 9, 10,
11, 12, 13, 14, 15, 16, 17] but the causal mechanisms are
mainly unknown.

We have therefore employed an animal model using
Wistar rats to investigate the age-dependent changes of Hb
subtypes and the changes caused by several types of
chronic hypoxia.

Material and methods

Animal experiments

New-born Wistar rats (n = 137, SLC, Tokyo, Japan) were divided
into three groups and each group was treated for 3 h in an atmo-
sphere-controlled chamber 2, 3, 9, 10, 16, 23, and 24 days after
birth using different gas compositions (Table 1) to simulate hyper-
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capnic/hypoxic, simple hypoxic and “normal” atmospheric condi-
tions (controls). The gas flow and composition was monitored by
using a WE-1B flow volume meter (Sanwa, Tokyo Japan) and an
OX-51 flow oxygen concentration counter with a E7068CM gal-
vanic cell (Iuchi, Osaka Japan).

From the three groups five or six rats were sacrificed at differ-
ent ages (Table 2) in a 100% carbon dioxide atmosphere after ex-
posure times ranging between 30 s to 3 min. Blood samples and
liver specimens were taken immediately after death.

Liver specimens were fixed in formalin (10% buffered) and
embedded in paraffin before haematoxylin-eosin staining (H&E)
and 3–4 µm thick sections were examined microscopically (× 100–
400) to determine EMH levels (as the number of haematopoietic
cells per defined field of view, nine randomly selected fields per
section).

The H&E sections were also screened for pathological changes.

Hb determination

Determination of total Hb concentration

An aliquot of the blood samples was centrifuged at 3000 g for 
10 min, the erythrocytes were washed 3 times with physiological
saline and lysed with 2 vols of Milli Q water. An aliquot of the clear
supernatant was diluted to a Hb concentration of 1 mg/ml (fetal rats)
or 3 mg/ml (young and adult rats). The Hb concentration was de-
termined by a haemaglobincyanide method with modified Van
Kampen-Zijlstra’s reagent [18, 19].

Apparatus preparation for liquid chromatography

Trifluoroacetic acid (TFA), acetonitrile (HPLC grade, both Wako
Pure Chemical Industries, Osaka, Japan), and Milli Q purified wa-
ter (Millipore, Bedford, MD) were used for analysis.

The columns used were a SynChropak RP-4 (SynChrom, La-
fayette, Ind.) and a µBondasphere 5 µC 18–300 A (Nihon Waters,
Tokyo, Japan). Neither pre-columns nor guard columns were used.

For separation on the column, solvent A (80:20 mixture of 0.1%
TFA in water and 0.1% TFA in acetonitrile) and solvent B (40:
60 mixture of the same solutions) were used [20]. The gradient of
38–55% B in 80 min and 55% B for 90 min was used for the iden-
tification and quantification. The flow rate for the column was 
1.0 ml/min [5].

Determination of globin peaks by HPLC analysis

The determination of each globin peak was performed by time-of-
flight (TOF) mass spectrometry analysis using a Kompact MALDI
II attached to a programmed computer analysing system (Kratos,
Sweden) [5] and confirmed by comparison with previously re-
ported data [21, 22, 23, 24, 25, 26, 27, 28].

Quantitative determination of globin chains

The amount of the different globin chains was determined by mea-
suring the relative peak areas of α- and β-chains on the chro-
matograms. The amount of fetal Hb was calculated as:

Hb-f(%) = β2-chain ratio/β1-chain + β2-chain ratio

The statistical significance was estimated by a paired t-test (p < 0.05).
All experiments using Wistar rats were carried out in accor-

dance with the “Principles of laboratory animal care” (NIH publica-
tion No. 85-23, revised 1985) and had been approved by the ethi-
cal committee of Nagoya City University School of Medicine.

Results

Globin composition

The determination of molecular weight of globin peaks by
TOF mass analysis allowed the differentiation of the glo-
bin fractions (Fig.1). The proportion of β-1 chains was
the lowest 1 day before birth and increased during the first
3 weeks of life while the levels of β-2 chains were the re-
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Table 1 Different gas compo-
sitions used for the treatment
of the three groups

Group Air volume Additional gas volume Oxygen amount

Hypercapnic/hypoxic n = 24 1800 ml/min 300 ml CO2/min 13.9–15.2%
Simple hypoxia n = 26 1800 ml/min 300 ml N2/min 13.9–15.1%
Control group n = 87 2100 ml/min 0 20.9%

Table 2 Average number of EMH cells per field of view at dif-
ferent ages are given for the three groups (* significant differences
to the hypoxia related groups ** significant differences between the
CO2 hypercapnic/hypoxic and the N2 simple hypoxic groups)

Age (days) Controls CO2 rats N2 rats

12-day fetus 55 (1/4)
20-day fetus 834
1 897
7 268

14 198 227 205
21 28* 183 187
28 0* 135** 28
Adult rat 0

Fig.1 HPLC peak pattern and molecular weights of seven differ-
ent globin chains and the haem protein of Wistar rats
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verse (Fig.2). By determining the proportions of α- and
β-chains it was possible to differentiate between fetal
types, neonatal patterns and mature types of globin com-
position (Fig.2). The average levels of β-2 globin chains
increased rapidly during the fetal period and reached a
maximum just before birth. The levels then began to de-

crease until 4 weeks after birth in all groups investigated.
The β-2 chain levels of the hypercapnic/hypoxic groups
also decreased according to the age but 2 weeks after birth
this decrease became relatively slower so that the differ-
ences between these groups and the controls were statisti-
cally significant 21 days after birth (Fig.3). The regres-
sion analysis of the β-2 chain levels showed a decreasing
pattern of the control cases (y = 37.5 – 0.361x) compared
to the pattern of the hypercapnic/hypoxic group.

EMH

EMH was observed in the liver starting at the 12th day af-
ter gestation (Fig.4a) and the cell numbers increased until
the 20th day post gestation (Fig.4b) and the day just after
birth and then decreased with the age (Table 2, Fig. 4a–d).
In both groups subjected to hypoxia, this decrease was less
steep as in the controls, the hypercapnic/hypoxic group ex-
hibiting the slowest decrease (p < 0.0125; Table 2, Fig.4e).

Other results

At the beginning of the experiments more severe hypoxic
or hypercapnic environments with oxygen concentrations
less than 8% were set up and all of the 7-days-old rats died
within 10 min. Under the environments containing 9–13%
oxygen the rats died after the second treatment. The re-
sults were therefore not included in this paper.

To estimate the consciousness of the rats during the ex-
periments, the level of activity was observed. Under the
simple hypoxic environments the rats showed abnormal
face washing and mounting activity. Under the hypercap-
nic/hypoxic environments the rats showed snap-breathing
and pre-coma symptoms during the 3 h of exposure.

Discussion

Many different minor findings have been reported in
SIDS cases but the pathophysiological significance of some
of these is questionable. For this and other reasons, it has
also been suspected that cases classified as SIDS do not
form a homogeneous group [29, 30, 31, 32, 33]. It is
therefore very important to recognise the mechanisms and
processes of death in each individual case. It is also im-
portant to elucidate the pathophysiological significance of
minor findings.

In the present study an animal model was used to in-
vestigate hypoxia-related changes of the haematopoietic
system, especially the subclasses of Hb and their relative
proportions and the number of EMH cells as an equivalent
for the haematopoietic activity.

Congote and Muray [4] and Iwahara et al. [28] de-
scribed different types of Hb in rats – the embryonic and
adult types, but they did not analyse the subtypes quanti-
tatively. In the present study the investigation of “normal”
untreated rats (controls) allowed age-dependent standards

Fig.2 Normal average globin ratios of rats at different ages deter-
mined in each of six rats of the control group. The first to third pat-
terns are considered to be fetal types, the fourth to sixth patterns
are typical neonatal patterns and the other three are mature types

Fig.3 Age-dependent changes of the average β-2 globin ratios in-
cluding standard deviations in the three groups investigated



of α- and β-chain ratios to be defined in rats and also for
EMH activity in the liver. The comparison of these stan-
dards with the results obtained in the hypercapnic/ hypoxic
groups showed that the concentration of β-2 globin chains
is a very convenient indicator of preceding chronic hypoxia
in rats but it is not suitable to indicate single or short hy-
poxic episodes.

Under hypercapnic/hypoxic conditions the Hb structure
and EMH do not fully convert from the fetal to the adult
subtype patterns. But even in the two different types of

hypoxia (simple hypoxia and hypercapnic hypoxia) rather
different patterns could be observed indicating a much
stronger effect of the hypercapnic type of stimulation [34,
35].

These results suggest that the levels of oxygen and car-
bon dioxide have significant influence on the Hb structure
and EMH. The regulation of respiration is controlled by
many factors such as blood pH, pCO2, pO2, the nervous reg-
ulatory system, the action regulatory system [36, 37, 38,
39] and each of these systems is activated independently.

A. Kouno et al.: Haemoglobin subtypes and extramedullary haematopoiesis 69

Fig.4 a–e Different density of EMH cells in the liver of fetal and
young rats. Control cases of different ages a 12th day of gestation
b 20th day of gestation, c 14 days after birth, d 21 days after birth,e
Liver section of a 21-day-old rat from the hypercapnic group with
significantly higher number of EMH cells compared to d
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In particular, respiratory activity is strongly activated by in-
creasing CO2 concentrations and less strongly by decreas-
ing O2 but the combined action of these factors is a very
strong trigger [36, 39].

The difference in activity between the two groups of
exposure to hypoxia can be considered as a symptom either
of a predominant sympathetic condition in the hypercap-
nic group or of parasympathetic nerve predominance in the
simple hypoxic group.
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